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Abstract

Reinforcement learning (RL) has recently shown promise in solving difficult numerical problems and has discovered
non-intuitive solutions to existing problems. This study investigates the ability of a general RL agent to find an optimal
control strategy for spacecraft attitude control problems. Two main types of Attitude Control Systems (ACS) are
presented. First, the general ACS problem with full actuation is considered, but with saturation constraints on the
applied torques, representing thruster-based ACSs. Second, an attitude control problem with reaction wheel based
ACS is considered, which has more constraints on control authority. The agent is trained using the Proximal Policy
Optimization (PPO) RL method to obtain an attitude control policy. To ensure robustness, the inertia of the satellite
is unknown to the control agent and is randomized for each simulation. To achieve efficient learning, the agent is
trained using curriculum learning. We compare the RL based controller to a QRF (quaternion rate feedback) attitude
controller, a well-established state feedback control strategy. We investigate the nominal performance and robustness
with respect to uncertainty in system dynamics. Our RL based attitude control agent adapts to any spacecraft mass
without needing to re-train. In the range of 0.1 to 100,000 kg, our agent achieves 2% better performance to a QRF
controller tuned for the same mass range, and similar performance to the QRF controller tuned specifically for a
given mass. The performance of the trained RL agent for the reaction wheel based ACS achieved 10 higher better
reward then that of a tuned QRF controller.

Keywords: Attitude control, Reinforcement learning, Robust control, Machine learning, Artificial Intelli-
gence, Adaptive control

Abbreviations 1. Introduction

ACS Attitude Control System. 1-9 ) ) )
In this study, we aim to develop a framework which

solves the general satellite attitude control problem.

MDP Markov Decision Processes. 2, 4, 7 Spacecraft attitude control is the process of orienting
a satellite toward a particular point in the sky, pre-

cisely and accurately. Most modern spacecraft offer

pdf probability distribution function. 2 active three-axis attitude control capability. Tradi-
tionally, satellite attitude control has been performed

POMDP Partially Observable Markov Decision using several types of actuators, but the two main
Processes. 4 categories of Attitude Control Systems (ACSs) are
momentum management and momentum exchange

based devices. Momentum management based de-

QRF Quaternion Rate Feedback. 2, 5 vices utilize external torques and hence can change
the angular momentum of the satellite, such as atti-

tude control thrusters and magnetic torque coils. Mo-

RL Reinforcement Learning. 2-9 mentum exchange based devices produce torques by
redistributing the angular momentum between satel-

lite components, thus have no net external torques on
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the satellite; this class of ACS include reaction wheel
assemblies and control moment gyroscopes.

The pure attitude control problem, also known as
the Euler rigid body rotation problem, has been stud-
ied for decades and several solutions exist [1,2]. De-
spite this, the attitude control problem with realistic
system constraints is a challenging problem for most
current and future spacecraft missions. A key lim-
itation of current control methods is to have state
feedback control algorithms that guarantee stability
and accuracy for realistic system constraints.

The current state-of-the-art solutions for attitude
control problems split the ACS into two loops. An
outer loop optimizes the performance of the system
for some finite time horizon, using open-loop optimal
control algorithms, such as Model Predictive Con-
trol (MPC) or Dynamic Programming (DP) based
methods [3]. An inner loop tracks the trajectories ob-
tained by the outer loop using state feedback-based
control to perform the attitude control maneuvers.
This provides a workaround for not having a global
state feedback-based control systems, by finding tra-
jectories that can be locally stabilized.

Reinforcement Learning (RL) has recently shown
tremendous success in solving complex problems. RL
is a method of finding the optimal response of a sys-
tem, similar to that of dynamic programming meth-
ods, but without the “curse of dimensionality” [4,5].

Most modern RL methods have been developed
for discrete-time Markov Decision Processess (MDPs)
[6]. All RL algorithms learn policies that provide a
system with the action that leads to the best per-
formance given the current state. Such a policy can
be thought of as a surrogate state feedback control
algorithm. RL has been demonstrated successfully
for simple classical control problems, such as the in-
verted pendulum problem and the cart pole prob-
lem [7]. Figure 1 shows a conventional RL setup for
control problems, where an agent interacts with an
environment, and the actions of the agent produce
feedback in the form of rewards and observations.
The RL algorithm records the actions, observations,
and rewards, and updates the agent, using various RL
algorithms, at each epoch to maximize the expected
reward.

All RL algorithms can be classified into two main
categories: walue iteration and policy iteration meth-
ods. Value iteration methods are generally more sam-
ple efficient, but work best with continuous state,
discrete control type problems [8,9]. Policy itera-
tion methods can function for continuous space and
continuous control type problems, but are generally
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Fig. 1: RL setup for control problems

not as sample efficient [10]. The policy iteration
based method, known as Proximal Policy Optimiza-
tion (PPO) is considered in this study since the atti-
tude control problem is a continuous control problem.
Exploration of the search space in the PPO algorithm
is performed by assuming probabilistic policies, where
the actions taken for a given state is modeled using a
Gaussian probability distribution function (pdf). The
agent provides the mean action and standard devia-
tion of that action, for an observation/state. A large
standard deviation allows for more exploration, while
a small standard deviation utilizes exploitation and
also can be interpreted as a measure of how sure the
agent is for a certain action.

This study has two main parts. First, the attitude
control problem is formulated for the RL algorithm.
The RL algorithm will be trained for the simple at-
titude control problem, with the only constraints be-
ing actuator saturation limits. The RL algorithm
is then trained for a family of spacecraft, based on
an existing satellite bus, to have a robust algorithm
that can work for a variety of missions. The results
for the RL agent are compared against conventional
control methods, such as the Quaternion Rate Feed-
back (QRF) controller. Next, the RL agent is trained
for a momentum exchange based system with higher-
fidelity models.

2. Methodology

The satellite attitude control problem is formu-
lated as a discrete-time MDP, to utilize the PPO al-
gorithm to obtain solutions. The time discretization
of the dynamical system is a relatively simple step
and has been performed for the satellite attitude con-
trol problem to use with Dynamic programming or
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Discrete-time multiple shooting methods [11]. The
satellite attitude control problem is an MDP if the
state vectors s; at any time ¢ are a composition of
the attitude, represented by quaternion ¢; and angu-
lar velocity, represented by w, in Eq. (1).

(1)

Given that the system starts with an initial an-
gular velocity (Eq. (2)) and some initial orientation
(Eq. (3)), the attitude control problem involves two
objectives, which are dependent on each other. The
first objective is to achieve a desired angular velocity
(Eq. (4)), also known as slew rate, at a desired time
(tq). The second objective is to achieve a desired ori-
entation (Eq. (5)), also known as points in space, at
a desired time (¢4).

St = [Qt; Wt]

w(to) = wo (2)
q(to) = qo (3)
w(ta) = wa (4)
q(ta) = qa (5)

The same objectives can be stated in the target
frame of reference by defining error states and set-
ting them to zero, as depicted in Eq. (6) and Eq. (7).
The transformation to the target frame of reference
allows the solution of the attitude control problem
from different states to the origin, and utilize the so-
lutions for a family of problems that can be translated
to the same initial states in the target space, quanti-
fied in Eq. (8) and Eq. (9). This change in reference
frame reduces the search space considerably for the
RL algorithm.

we(ta) = w(ta) —wa =0 (6)
qe(ta) = q(ta)qy = 10,0,0,1]" (7)
we(to) = wo — wy (8)
qe(to) = 0y (9)

For RL, the attitude control problem needs to be
formulated as an unconstrained optimization prob-
lem. A simple way of accomplishing this is to enforce
the constraints via penalties in the objective func-
tion [12]. In addition to including constraint penal-
ties in the objective function, it is often desirable to
include a control effort term in the objective. With
this background, the following framework can be es-
tablished:

T(Shat) = —Qqfer — awHweHQ —ag—¢ (10)
Gere = |ge(t) - [0,0,0,1]7] — 1, (11)
TAC-19-C1.5.2

where a4 and «,, are weights to tune the system re-
sponse, and c is the conditional reward to include
realistic constraints (Eq. (12). The magnitude for
¢ ranges from 0-10%; ¢ is positive if the attitude
and velocity are close to the desired targets, biasing
the algorithm toward the targets. c¢ is a large neg-
ative reward anytime the environment is reset due
to poor agent performance (e.g., exceeding the maxi-
mum tumble rate for a satellite, or pointing 180° away
from the target). The reason for the large negative
reward and reset for slew and attitude is to bound
the search space.

200 : if gerr < Qe

1000 : if qerr < qe and |[|wel|2 < we
_103 sif Qerr Z q) or ||weH2 S w1
—10* ¢ if qerr > 2q1 OF ||wel]2 < 2wy

—103 : if reaction wheels saturated
0 : otherwise.

(12)

Since the best reward per step is 1200 we also de-
fine a measure of attitude performance, which can be
intepreted how close the reward per step is to 1200,
defined in Eq. 13

1200

— 100
(1 - Tavrage)

performance = (13)

where, Tayrage i the average reward per step ob-
tained. In all test cases, the best performance achiev-
able is 100, with a higher number indicating a better
performance.

Due to the inter-dependence of the angular veloc-
ity and the attitude of a rigid body, the RL algo-
rithm will have a difficult time discovering the solu-
tions to the full attitude control problem. To mitigate
this, a curriculum learning-based method is utilized.
The environment starts with initial conditions close
to the target states, and increases in difficulty as the
agent learns the simpler problem. The difficulty of
the problem is controlled by a variable termed “hard-
ness” here. Hardness takes values between 0 to 1,
where 1 is the requirements for a realistic system,
and zero is the easiest version of the problem. In this
study, a hardness of 0 indicates that the satellite is
in the target state, and so the optimal action is to no
torque.

In addition to the hardness variable to control the
difficulty of the problem, the ACS in this test is given
n time steps during a roll-out to achieve the target
state, but if n steps were not sufficient to achieve
the target state, the next rollout of n steps begins
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Fig. 2: Attitude control capability against spacecraft
mass properties for various mission types

Spacecraft bus | Mass(kg) Side length (m)
CubeSats 1.3-20 0.1-0.3
Microsatellites | 20-200 0.5-1
Communication| 1000-5000 2-5

satellites

Deep space bus | 1000-5000 5-20

Space 10,000-20,000 | 4-15
observatory

Space station 100,000 20-100

Table 1: Physical
buses.

properties of different pacecraft

with the same states that the agent achieved in the
previous roll-out.

3. Case Studies

One of the key objectives of this study is to ob-
tain an attitude control agent that can be deployed
to a broad family of spacecraft, irrespective of the
actuator capability and satellite mass and moment
of inertia. Such an attitude control method answers
the problems faced by missions where the spacecraft
capabilities change throughout a mission, such as the
Asteroid Redirect Mission, Europa Clipper, etc. Ad-
ditionally, a controller that can perform well across
a wide variety of designs can then be used to solve
optimal control co-design problems [13,14]. To ob-
tain such an agent, the spacecraft mass and attitude

TAC-19-C1.5.2

Hyper parameter  Value

Steps 600

dt 30 secs

Iterations 2000

Roll-outs 512

Epochs 256

Mini-batch 512

Layers 4 (Fully connected)
Neurons per layer 7,4,4,7

Table 2: Hyper-parameter for tuning RL based satel-
lite attitude control methods

control authority are changed when each reset func-
tion is called. Obtaining a general attitude control
agent allows using the same agent across multiple
missions, which increases the reliability of the con-
trol algorithm. Figure 2 shows the range of differ-
ent properties exhibited by different classes of satel-
lite missions. The spacecraft properties for the RL
agent is randomly chosen within the spacecraft de-
sign space enclosed by the convex hull indicated in
Fig. 2. The blue region indicates the mass and peak
attitude control actuator torques for ACS that have
flight heritage [15]. Points within the region show ex-
amples of missions with vastly different requirements
and capabilities [11,16-22].

To initialize random physical properties for the
spacecraft, a scale integer is first randomly chosen.
This integer determines if the physical properties are
within the regime of nanosatellites, microsatellites,
commercial satellite, or heavy satellite buses, seen in
Table 1. Once the scale integer is chosen, a physi-
cal dimension for the spacecraft central bus is chosen
that is appropriate to the spacecraft class, and a mass
is assigned.

The attitude control problem with changing mass
and inertial properties is not an MDP, but is instead
a Partially Observable Markov Decision Processes
(POMDP), but RL algorithms have shown good per-
formance with solving POMDP [23], and hence the
problem formulation for the changing mass property
case is the same as that for the constant satellite mass
property.

The RL based satellite attitude control agent is
tested for two main cases:

1. Momentum management systems: ACS of satel-
lites that utilize external torques, generated us-
ing thrusters or magnetic torque coils.

2. Momentum exchange systems: ACS of satellites

Page 4 of 10



70th International Astronautical Congress, Washington D.C., United States, 21-25 October 2019.
Copyright © 2019 by Mr. FNU Vedant. Published by the IAF, with permission and released to the IAF to publish in all forms.

T T T

hardness: 0 to 1 hardness: rand(0.2,1)

30t : §
a
% \’0‘..-,-'. . LI . s ° .
o e S Lot tae e .
S5 T : o]
) . . .
I . 2 °« ° o.
. . ..,. Sefhege of s Y L )
% 40 3T (A e Fe Ay AR ey
< . 3
. . ° PR L 4
_45 vt i
0 500 1000 1500 2000
Episode

Fig. 3: Average reward using a tuned QRF controller
for 180 kg satelllite (from Ball aerospace [25]).

that use internal forces to change the attitude.
Since no external torque is applied, such systems
can only change the attitude and not the slew
rate of a spacecraft for extended periods of time
without the use of momentum management de-
vices.

Both cases utilize a discrete-time system, with the
control agent making decisions every 10 seconds. The
hyper-parameters for each RL training are listed in
Table 2.

4. Results and discussion

The system is simulated in the Mujoco physics en-
gine [24]. The satellite is initialized as a rigid body.
The satellite is connected to the world frame through
a free joint, which is a joint with six degrees of free-
dom. The simulation environment has no gravita-
tional, aerodynamic, or solar radiation pressure ef-
fects.

4.1 QRF baseline

As a baseline for comparison the average reward
per step is presented for the Ball aerospace space-
craft bus [25] for the simple momentum management
environment. The peak torque that can be applied
for this simulation case is 10 mNm. The average re-
ward for the QRF controller can be seen in Fig. 3;
the data point near a hardness of 0 correspond to the
spacecraft being at the desired target at the start of
the simulation, hence the reward accrued is a large
positive one. No other cases obtain a large positive
reward, because the ACS uses torques to reach the
target state, which results in negative rewards. The
rewards for each case in Fig. 3 have been averaged
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Fig. 4: Average reward using a tuned QRF controller
for 180 kg satelllite (from Ball aerospace [25]) with
Collin’s Aerospace Reaction Wheel Assembly [26].

for 512 roll-outs of the same hardness, to reduce the
effect of random initial states. It can be seen that
the average reward per step for the tuned QRF con-
troller is between -45 and -30. The QRF controller
for the higher fidelity environment utilizing reaction
wheels from Collins aerospace, with the same satellite
bus is presented in Fig. 4. The average reward per
step is considerably lower than the simple control en-
vironment since the control algorithm saturates the
reaction wheel while performing most of the trajec-
tories. This is because saturating the reaction wheels
and achieving the target attitude state is more opti-
mal than not achieveing the target state.

4.2 Momentum management based system

The torques by the ACS are approximated by ex-
ternal torques acting on the rigid body, in the local
(body) frame. Initial studies are performed with an
ESPA ring class satellite bus by Ball aerospace [25].
The first 1000 episodes are simulated with a linearly
increasing hardness variable, with episode 0 having a
hardness of 0, and episode 999 a hardness of 1. Subse-
quent episodes are simulated with random hardness,
chosen uniformly between 0.2 and 1. The reward ob-
tained by the RL agents can be seen in Fig. 5 Each
episode is simulated with a random satellite inertia
and peak control torque capability, within the bounds
shown in Fig.2. seen in the constantly varying reward
received by the agent.

It can be seen from Fig. 6 that the simulation
starts with an easy case, where the satellite is already
at the target state. Here the agent learns quickly that
the optimal action is to not produce any torques. As
the hardness increasese, the optimial action is more
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Fig. 5: Average rewards obtained by RL based atti-
tude control agent (from Ball aerospace [25])
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complicated, and the reward obtained can never be
as high as that for the easier environment, as seen in
Fig. 7. The results obtained for the changing mass
attitude control agent is siilat to OpenAl’s Learning
Dexterity [27] study, where a robotic had was sup-
posed to change the orientation of an arbitrary object
t a desired pose, this is similar to changing the atti-
tude of a spacecraft of different physical properties.

Figure 6 shows the standard deviation of the ac-
tions produced by the agent. A smaller standard de-
viation indicates that the agent is sure of the response
for the given state. Once the agent has learned the
response for the maximum hardness case, a decrease
in the standard deviation can be seen. This indicates
that the agent is more certain of the action to be
taken to maximize the reward.

The next result is for a varying satellite mass, and
peak attitude control torque. A random value is cho-
sen from the design space depicted in Fig. 2.

Figure 8 shows the variety of masses simulated for
the RL training run, the spacecraft properties were
randomly sampled from the design space defined in
Fig. 2. It can be see that the RL ACS agent achieved
similar performance to the best QRF controllers with-
out the need for explicit re-tuning for each spacecraft.
The RL agent training results are seen in Fig. 7. The
standard deviation of the probabilistic actions taken
by the RL agent for the varying satellite case can be
seen in Fig. 9

4.3 Momentum exchange based systems

To simulate momentum exchange based ACS, the
Mujoco environment was modified to simulate a rigid-
body, the satellite bus, with 3 rotating disks of cer-
tain inertias connected to the center body using a
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Fig. 10: Mujoco environment rendering of the satel-
lite with a 3-axis reaction wheel assembly (blue).

single degree of freedom joint, seen in Fig. 10. This
setup closely simulates a reaction wheel system. Mu-
joco allows modeling actuation of revolute joints us-
ing motors and joints with friction, the reaction wheel
actuation was modeled using such motors. The satel-
lite bus for the initial studies was the same Ball
Aerospace micro-satellite bus with Collin’s Aerospace
Reaction Wheel Assembly [26].

All simulation parameters were kept identical from
the simple actuator test, except the torque produc-
tion numbers and maximum momentum storage ca-
pabilities. These numbers were assigned according to
the data-sheet for Collins RWAs [26]. Additionally,
the speeds of each reaction wheel was provided to the
control agent, this was to make sure that the problem
represents a MDP.

Figure 11 shows the average reward obtained by
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Fig. 11: Average rewards obtained by RL based atti-
tude control agent for Reaction Wheel Assembly
based ACS.

the RL attitude control agent for all the 2000 train-
ing episodes. Three runs are shown, blue and or-
ange lines show rewards per step for agents trained
in the curriculum learning setup, while magenta line
run shows the reward per step for a standard RL
setup. It is seen that for this problem the rate of
learning initially is similar to that from curriculum
learning, but the algorithm seems to have significant
issues midway through the training and the average
rewards drop significantly. The other two curves show
training under curriculum learning setup, both agents
learn the optimal policy quickly, and have a consis-
tent increasing average reward per step, showing that
the learnt policy is stable. The orange line learns
slightly slower then the blue line, this is probably be-
cause the hardness of the environment keeps chang-
ing randomly post curriculum (non-ergodic environ-
ment), and hence the optimal policy keeps changing,
and learning a changing policy is generally harder.
The blue curve has a constant hardness of one after
episode 999 and this makes the environment ergodic
for the rest of the episodes.

Figure 12 shows standard deviation of the control
agents for the reaction wheel ACS case obtained from
the three different training regimes. Three runs are
shown, blue and orange lines show standard deviation
for agents trained in the curriculum learning setup,
while magenta line run shows the standard devia-
tion for the agent for a standard RL setup. Both the
agents that were trained using curriculum have a low
standard deviation which is constantly decreasing. A
decreasing standard deviation is an indicator that the
optimal policy has been discovered and the agent now
is sure of the action to make for a given state. The
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Fig. 12: Standard deviations of the probabilistic ac-
tions performed by the RL based attitude control
agent for Reaction Wheel Assembly based ACS.

agent trained using standard, non-curriculum based
methods, shows a sharp increase in the standard de-
viation once it encounters the run with a significantly
lower average reward, indicating that the agent needs
to explore more to converge to an optimal policy.

5. Conclusion

A general RL based attitude control agent was
trained and presented. The training utilizes a cur-
riculum learning based approach since the attitude
control problem is nonlinear. Because of this nonlin-
earity, using conventional RL techniques to achieve
target states would be infeasible.

The realized agent demonstrated that it could dis-
cover the attitude control solutions for an individual
satellite, as well as for a family of satellites, without
being informed of the mechanical properties of the
satellite, with 2% performance benefit to a QRF con-
troller tuned to have the best performance across the
same mass range as seen in Fig. 13.

The performance of the RL based attitude control
is similar to QRF controllers that have been hand
tuned for each mass case, seen in Fig. 13. The RL
trained agent was tested for a mass variation in the
range of 0.1 to 100,000 kg in the satellite mass, along
with dimensional variation in the range of 0.1m to
100 m for each side length, yielding a large variety of
satellite physical properties.

For the higher fidelity reaction wheel based ACS,
the RL agent had a performance metric of 97 (Eq. 13),
a lead of 25 over the tuned QRF controller with a
performance metric of 72, as seen in Fig. 14.

Such controllers and rapid learning-based tech-
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Fig. 13: Performance of our RL based attitude con-
trol agent vs. QRF controllers.
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Fig. 14: Performance of RL agent vs tuned QRF con-
troller for a 200 kg scale satellite, RL based
method has a 25% improvement over the QRF
controller.
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niques are promising strategies for a wide host of
missions where the physical propertied of the satel-
lite change unpredictably. Additionally, RL based
attitude control algorithms can simplify development
times and increase the reliability of ACS, since the
same algorithm can operate for a large variety of mis-
sions.
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